
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 9, Issue 1 (Jan. - Feb. 2013), PP 13-17
www.iosrjournals.org

www.iosrjournals.org 13 | Page

Mining Precise Top-K Dominating Itemset from Data Streams

G. Sandhya
1
, S. Kousalya Devi

2
, K. Megala Devi

3
, Dr. C. Kumar Charlie Paul

4

1(Department of CSE, A. S. L. Pauls College of Engineering and Technology, India)
2(Department of CSE, A. S. L. Pauls College of Engineering and Technology, India)
3(Department of ECE, A. S. L. Pauls College of Engineering & Technology, India)
4(Department of ECE, A. S. L. Pauls College of Engineering & Technology, India)

Abstract: Top-K dominating query is a preference based query which determines the dominating itemset from

the data stream. This query combines the notion of ranking function with the concept of dominance. Data-

stream mining has more constraints and requirements. It determines valuable information from a great deal of
primitive data. This is adequate for static datasets, where updates are rare. As many modern applications adopt

dynamic datasets, they need continuous query processing algorithms to revive the query result. The Sliding

Window defines the set of active points which are the most recently arrived points. The existing work combines

the ADVANCED ALGORITHM, the APPROXIMATE HOEFFDING BOUND ALGORITHM and the

APPROXIMATE MINIMUM SCORE ALGORITHM. This combination guarantees accuracy, provides faster

processing and best performance. The enhancement work proposes the TOP-K SCRUTINIZING ALGORITHM

for finding dominant itemset from datastream by partitioning the Sliding Window into buckets of equal size. This

is an Event processing algorithm which includes event scheduling and rescheduling towards avoiding the

examination of points for inclusion in the Top-K. Experimental results using real datasets and synthetic datasets

show that the proposed method reduces CPU time and memory overhead. Also, it is quite efficient and achieves

high accuracy.

Keywords- Data-stream, Itemset, Event Processing Algorithms, Sliding Window, Top-K Dominating Queries.

I. Introduction
Frequently, two preference based queries are in use. They are the Top-K queries and the Skyline

queries. The Top-k queries [8] require a ranking function which assigns a value to each point. The ranking

function is user defined. The Skyline queries are scaling invariant which means that if scaling applies to

dimension values then, the result remains the same. The Top-K queries maintain the advantages and eliminate

the drawbacks of both the Top-K queries and the Skyline queries. At present, two basic Sliding Window types

are available. They are Count based Sliding Window and Time based Sliding Window.

In a Count based Sliding Window [1], the number of active points remains even. The running out time
of some points will be equal to the entering time of the same amount of other points. In a Time based Sliding

Window [1], the number of active points may not remain even. The running out time of a point does not depend

on the entering and running out time of other points. A Grid based indexing scheme [9] maintains simplicity

during the presentation of the algorithm. This scheme serves the purpose of book keeping, which deletes a

running out point and inserts a new point. Subsequently, it updates the scores of the Top-K dominating points.

The scheme makes easy computation of the domination score of a point. Regular grid and adaptive grid are the

two types of grid available.

The initial work studies the combination of an event processing algorithm and two approximate

algorithms which achieves more than 95 percent accuracy. Subsequently, the work proposes an event processing

method which partitions the Sliding Window into equal size and thus precise the result having efficiency more

than 97 percent. The final work carries a thorough experimental evaluation based on real datasets and synthetic
datasets. This provides evidence regarding the CPU time of the proposed algorithm. Remaining of the paper

organizes as follows. Section 2 shows the work associated with the problem. Section 3 studies the combination

of the event processing algorithm and two approximate algorithms. Section 4 discusses a new technique by

partitioning the Sliding Window. Section 5 presents the experimental evaluation of based on some datasets.

Section 6 concludes the work. At last, section 7 discusses the future work.

II. Related Work
Preferences involve in disciplines such as Game Theory, Computational Geometry and many others.

The batch counting [8] calculates the scores of skyline points in batch instead of iteratively applying separate
range queries. This involves a light weight technique [8] to derive the upper bound score of non-leaf entries at

low cost and the lazy counting technique to delay the counting of points for the purpose of forming better groups

Mining Precise Top-K Dominating Itemset from Data Streams

www.iosrjournals.org 14 | Page

for batch counting. To be effective, the tree traverses with a carefully designed priority order aiming at
minimizing the I/O cost.

A grid-based indexing scheme [7] facilitates an efficient search and update operations, evading costly

re-organization costs. Here, the method uses an adaptive grid which separates equally the tuples in each

dimension. The schema formulates and tackles the problem of PROBABILISTIC TOP-K DOMINATING

(PTD) query [5] in the context of uncertain databases. This can easily apply the pruning conditions once if the

lower bound scores are available. The Sliding Window Combinatorial Approximation (SWCA) [5] determines

frequent itemsets over sliding windows in a datastream. The Min Top-K algorithm [2] maintains a MINIMAL

TOP-K CANDIDATE SET (MTK) which determines the Top-K value and thus eliminates the need for re-

computation.

Reverse Top-K queries [4] are essential for the manufacturers to access the potential market and impact

of their products based on competition. As stated, [6] discusses the problem of processing Top-K dominating
queries on multidimensional data. The TOP-K MONITORING ALGORITHM (TMA) [9] re-calculates the

result from scratch. However, the SKY-BAND MONITORING ALGORITHM (SMA) maintains a superset of

the current answer, for the purpose of avoiding frequent re-computations. According to [1], the running out time

of a point will be equal to the sum of the entering time of a point and the number of active points. Here, the data

forms a sequence of points. The entering and running out time instances characterize these points.

III. Combined Algorithm
1. Introduction

Three algorithms can work in combination. They are the ADVANCED ALGORITHM (ADA),

APPROXIMATE HOEFFDING BOUND ALGORITHM (AHBA) and APPROXIMATE MINIMUM SCORE

ALGORITHM (AMSA). For the purpose of simplicity, the combination of algorithms adopts Count based

Sliding Window. Here, if a new point enters the Sliding Window the oldest one will run out and the time

progresses. Hence, the running out time of the points will be equal to the sum of the running out time of the

points and the number of active points. Here, P is the set of active points, N is the number of active points,

score(𝑃𝑖) is the number of points dominated by 𝑃𝑖 , Top-K is the set of K points with the best scores, K is the

number of points in the result, now is the current time instance, and 𝑠𝑐𝑜𝑟𝑒𝑘 is the 𝐾𝑡ℎ best score.

2. Advanced Algorithm

The ADVANCED ALGORITHM [1] uses candidate points and thus reduces the number of exact score
computations. The points whose event processing time is in the near future are the candidate points. The

algorithm endlessly evaluates the score of these special points. Some points will terminate before processing the

event, when the run out time of a point is less than the event processing time. Such an event characterizes as

obsolete. Here, if it evicts obsolete events then, it reduces the storage requirements. The algorithm determines a

safe interval [1] by using r points and a counter as follows:

𝑆𝐼 𝑃𝑖 = min
𝑠𝑐𝑜𝑟𝑒𝑘−𝑟 − 𝑠𝑐𝑜𝑟𝑒 𝑝𝑖

2
 , 𝑒𝑥𝑝𝑟+1 − 𝑛𝑜𝑤 … (1)

3. Approximate Algorithms

Two approximate algorithms suitable for ADA are APPROXIMATE HOEFFDING BOUND

ALGORITHM and APPROXIMATE MINIMUM SCORE ALGORITHM in which AHBA [1] guarantees

accuracy by maintaining samples. If the maximum score of a cell is greater than the difference between the top

score and the time threshold also no other cell dominates the same cell with a sample, then AMSA [1] keeps

sample for the corresponding cell (∆𝑡 is the time threshold and scorek is the top score). ∆𝑡 initializes to n/1000

and adjusts the values automatically. This controls the error introduced in the score estimation. AMSA uses

quick and dirty approximation, thus offers fast solution. If 𝑠𝑐𝑜𝑟𝑒1 - 𝑠𝑐𝑜𝑟𝑒𝑘 < 𝑠𝑐𝑜𝑟𝑒𝑘 – minimum score of a cell,

then exclude all points belonging to the corresponding cell. This combination achieves better efficiency,
provides faster solution and guarantees accuracy.

IV. Top-K Scrutinizing Algorithm
The TOP-K SCRUTINIZING ALGORITHM (TSA) is an event processing algorithm which partitions

the Sliding Window into buckets of equal size and finds dominant itemset from datastream. Table.1 illustrates

the pseudocode of TSA. The TSA algorithm considers the entering points and the current time instance. The

inputs are the Truck Datasets, Buckets of equal size B, Sliding Window with five Buckets and n Active Points.

The algorithm obtains the Top-K dominating points as output. Here, P is the set of active points, N is the

number of active points, score(𝑃𝑖) is the number of points dominated by 𝑃𝑖 , Top-k is the set of K points with the

Mining Precise Top-K Dominating Itemset from Data Streams

www.iosrjournals.org 15 | Page

best scores, K is the number of points in the result, now is the current time instance, 𝑠𝑐𝑜𝑟𝑒𝑘 is the 𝐾𝑡ℎ best
score.

Table.1: Top-K Scrutinizing Algorithm.

The event processing algorithm contains an event processing time, event generation time and score of a
point at the event generation time. Each update applies a sequence of operation. Initially, the algorithm updates

the bookkeeping structure. Line 1 deletes the running out points and enters the new points. Line 1 also updates

the scores of the Top-K dominating points. Lines 2 to 16 process the entering points 𝑃𝑥 to determine whether

they should be a part of Top-K. Line 4 to 5 calls the procedure BucketInOut() which tracks the in-out operation

of each bucket when a point 𝑃𝑥 enters into the window W. Each time when a bucket in-out operation occurs, the

algorithm deletes the earliest transaction of the corresponding bucket which contains the summary of

transactions from the current window at each sliding. Hence, there is no need to maintain the whole transactions

within the current window in memory all along to support window sliding. The partition of the sliding window

is into five buckets of equal size and each bucket corresponds to a set of transactions. This is to reduce the

Algorithm TSA (𝑃𝑥 , now)

 𝑃𝑥 : the entering points
 now : the current time instance

Input : Truck Datasets, Buckets of equal size B, Sliding Window W= { 𝐵1 ,𝐵2 , 𝐵3 , 𝐵4 , 𝐵5},

 Active Points P= { 𝑃1 , 𝑃2, 𝑃3,…, 𝑃𝑛}

Output : Top-k Dominating Points

1. Update index and scores of points in TOPK;

2. 𝑒𝑟 . score=0;

3. 𝑒𝑟 . egt=now;

4. Call BucketInOut()

5. 𝑃𝑥← inserted into the window W

6. if (entry.𝑃1 = = exit.𝑃1 = = 𝐵1 && entry.𝑃2 = = exit.𝑃2 = = 𝐵2 && entry.𝑃3 = =exit.𝑃3 = = 𝐵3 &&

 entry.𝑃4 = = exit.𝑃4 = = 𝐵4 && entry.𝑃5 = = exit.𝑃5 = = 𝐵5) then

7. Call FindReferencePoint(𝑃𝑥)

8. 𝑃𝑟←FindReferencePoint(𝑃𝑥);

9. 𝑒𝑟←event of 𝑃𝑟 ;

10. score(𝑃𝑥) ← 𝑒𝑟 . score + now - 𝑒𝑟 . egt-1;

11. if (score(𝑃𝑥) ≥ 𝑠𝑐𝑜𝑟𝑒𝑘) then

12. Calculate score(𝑃𝑥) from scratch;

13. if (score(𝑃𝑥) ≥ 𝑠𝑐𝑜𝑟𝑒𝑘) then

14. Insert 𝑃𝑥 in TOPK;

15. if (𝑃𝑥 ∉ TOPK) then

16. ScheduleEvent (x, score(𝑃𝑥), now);

17. 𝑒𝑖←EventQueue.RemoveTop ();

18. while(𝑒𝑖. ept = = now);

19. if (number of top-k points ≥ k) then

20. score ← 𝑒𝑖. score + 𝑒𝑖. ept - 𝑒𝑖. egt;

21. ScheduleEvent (i, score, now);

22. if (𝑒𝑖 is not rescheduled) then

23. Calculate score(𝑃𝑖) from scratch;

24. if (score(𝑃𝑖) ≥ 𝑠𝑐𝑜𝑟𝑒𝑘) then

25. Insert 𝑃𝑖 in TOPK;

26. else ScheduleEvent (i, score(𝑃𝑖),now);

27. 𝑒𝑖←EventQueue.RemoveTop ();

28. function ScheduleEvent (j, score, now)

29. 𝑒𝑥𝑝1←least run out time of points in TOPK;

30. ept ←min([𝑠𝑐𝑜𝑟𝑒𝑘- score)/2]+now), 𝑒𝑥𝑝1);

31. if (ept ≥ now) then

32. 𝑒𝑗 .ept← ept;

33. 𝑒𝑗 .egt←now;

34. 𝑒𝑗 .score ← score;

35. EventQueue.Insert(𝑒𝑗);

Mining Precise Top-K Dominating Itemset from Data Streams

www.iosrjournals.org 16 | Page

memory overhead during the storage of transactions. If there are more buckets, then the memory overhead arises
during storage of the transactions. Line 6 checks in which bucket the points enter and the oldest points run out.

Line 7 calls the procedure FindReferencePoint(), which tries to locate a point 𝑃𝑟 in the bucket such that, it

dominates 𝑃𝑥 and it is not a part of Top-K. If such a point does not exist or the upper bound of the score is

larger than or equal to 𝑠𝑐𝑜𝑟𝑒𝑘 , then line 12 calculates 𝑃𝑥 from scratch. If score(𝑃𝑥) is greater than 𝑠𝑐𝑜𝑟𝑒𝑘, then

line 14 inserts 𝑃𝑥 in the Top-K.

Otherwise, line 28 to 35 generates an event for 𝑃𝑥 using the procedure scheduleEvent(). This procedure

takes three parameters such as the id j of the point, its score and now, which is the current time instance. First, it

calculates the event processing time. Subsequently, it checks whether time is greater than or equal to now. If so,
it inserts the event into the priority queue. Observe that, the event processing time is less than now as if the

parameter score is larger than 𝑠𝑐𝑜𝑟𝑒𝑘 . Thus, line 16 always generates an event, since either the upper bound in

line 11 or the exact score in line 13 is less than 𝑠𝑐𝑜𝑟𝑒𝑘 . At last, lines 17 to 27 processes all the events with the

event processing time equal to now. Lines 20 to 21 tries to re-calculate its 𝑒𝑖.ept value by using the upper bound

of score(𝑃𝑖) for an event 𝑒𝑖. If the event re-inserts into the event priority queue, then consider the subsequent

event. If not, if the upper bound estimation is poor, it is possible the calculated event time to be less than now. In

such a case, lines 22 to 26 proceeds with the exact score computation of score(𝑃𝑖) and either inserts 𝑃𝑖 in the

Top-K or re-calculates the event time based on the exact score of 𝑃𝑖 . Line 19 controls the run out of the Top-K

dominating points. If a Top-K point expires in now and no updates in 𝑠𝑐𝑜𝑟𝑒𝑘 then, no need to try to calculate

event times. In this case, it sets the 𝑠𝑐𝑜𝑟𝑒𝑘 to -1 to forcibly insert other points in Top-K. Afterward, it calculates

the score of the point of the initially examined event and inserts the point in Top-K. Eventually, it tries to re-

calculate the event time of the remaining events.

V. Experimental Results
All the algorithms implements using C Sharp and conducts experiment on a Pentium at 3.0 GHz with 1

GB of Random Access Memory (RAM). This uses the real datasets and the synthetic datasets, named as the car-

race datasets (http://www.amstat.org/publications/jse/datasets/nascarr.dat.txt). The dataset undergoes a

multidimensional analysis. The analysis considers the attributes such as the number of drivers, monthly

consumer price index, track length, laps completed, numbers of caution flags and lead changes, total prize

money, completion time, and coordinates of the track.

Table.2: Performance Analysis.

Number of Iterations

CPU Time in Milliseconds

ADA

ADA with AHBA

ADA with AMSA and

AHBA

TSA

1 577 390 312 187

2 468 468 390 202

3 436 577 343 265

4 468 405 302 218

Table.2 shows the performance analysis of the algorithms such as ADA, ADA with AHBA, ADA with

AMSA and AHBA and TSA. The algorithms have the following CPU time during the first iteration. ADA takes

577 milliseconds; ADA with AHBA takes 390 milliseconds; ADA with AMSA and AHBA takes 312

milliseconds and TSA takes 187 milliseconds. In the second iteration, the algorithms have the following CPU
time. ADA takes 468 milliseconds; ADA with AHBA takes 468 milliseconds; ADA with AMSA and AHBA

takes 390 milliseconds and TSA takes 202 milliseconds. The third iteration has the following CPU time. ADA

takes 436 milliseconds; ADA with AHBA takes 577 milliseconds; ADA with AMSA and AHBA takes 343

milliseconds and TSA takes 265 milliseconds. During the second iteration, the algorithms have the following

CPU time. ADA takes 468 milliseconds; ADA with AHBA takes 405 milliseconds; ADA with AMSA and

AHBA takes 302 milliseconds and TSA takes 218 milliseconds. The iteration continues till it obtains the Top-K

itemset.

Mining Precise Top-K Dominating Itemset from Data Streams

www.iosrjournals.org 17 | Page

Fig.1: iterations versus CPU time.

Fig.1 plots the CPU time obtained from the previous table for each of the iterations in a graph. The
graph takes the number of iterations in x-axis and the CPU time in y-axis. The solid diamond shape represents

the CPU time of TSA. The solid square shape represents the CPU time of ADA with AMSA and AHBA. The

solid triangle shape represents the CPU time of ADA with AHBA. The solid circle shape represents the CPU

time of ADA. From the Table.2 and Fig.1, it is clear that TSA reduces the CPU time.

VI. Conclusion
Top-K dominating query determines the dominating itemset from the data stream by combining the

notion of ranking function with the concept of dominance. The combination of ADA with AMSA and AHBA is

an event processing algorithm in which ADA shows the best performance, AMSA offers fast solution and
AHBA guarantees accuracy. TSA also uses the concepts of Top-K dominating query and retrieves dominant

itemset from datastream, by partitioning the Sliding Window into buckets of equal size. It is clear that TSA

reduces the memory overhead since the Sliding Windows gets divided into five buckets and maintains the

transactions for those five buckets. Finding Top-K itemset using these buckets may also provide higher

accuracy. It is also evident that TSA has reduced the CPU time better than the combination of ADA with AMSA

and AHBA. Hence, TSA which is an event based algorithm offers significant flexibility, higher accuracy,

reduces the memory overhead and the CPU time.

References

Journal Papers:
[1] M. Kontaki, A. N. Papadopoulos and Y. Manolopoulos, Continuous Top-K Dominating Queries, Proc. IEEE Transactions on

Knowledge & Data Engineering, Vol. 24, 2012, 840-853.

Proceedings Papers:
[2] Di Yang, Avani Shastri, Elke A. Rundensteiner and Mathew O. Ward, An Optimal Strategy for Monitoring Top-k Queries in

Streaming Windows, Proc. Int’l Conf. Extending Database Technology: Advances in Database Technology, 2011.

[3] Kuen-Fang Jea and Chao-Wei Li, A Sliding-Window Based Adaptive Approximating Method to Discover Recent Frequent Itemsets

from Data Streams, Proc. IMECS, 2010.

[4] A. Vlachou, C. Doulkeridis, Y. Kotidis and K. Nørvag, Reverse Top-k Queries, Proc. IEEE Int’l Conf. Data Engg., 2010.

[5] X. Lian and L. Chen, Top-k Dominating Queries in Uncertain Databases, Proc. 12th Int’l Conf. Extending Database Technology:

Advances in Database Technology, 2009.

[6] M. L. Yiu and N. Mamoulis, Multidimensional Top-k Dominating Queries, Proc. Int’l Conf. Very Large Data Bases, 2009, 1-23.

[7] M. Kontaki, A. N. Papadopoulos, and Y. Manolopoulos, Continuous Top-k Dominating Queries in Subspaces, Proc. Panhellenic

Conf. Informatics, 2008.

[8] M. L. Yiu and N. Mamoulis, Efficient Processing of Top-k Dominating Queries on Multi-Dimensional Data, Proc. Int’l Conf. Very

Large Data Bases, 2007, 483-494.

[9] K. Mouratidis, S. Bakiras, and D. Papadias, Continuous Monitoring of Top-k Queries over Sliding Windows, Proc. ACM SIGMOD

Int’l Conf. Management of Data, 2006, 635-646.

0

100

200

300

400

500

600

700

1 2 3 4

C
P

U
 T

im
e
 i

n
 M

il
li

se
c
o
n

d
s

Number of Iterations

TSA

ADA with AMSA

& AHBA

ADA With AHBA

ADA

