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Abstract: Top-K dominating query is a preference based query which determines the dominating itemset from 

the data stream. This query combines the notion of ranking function with the concept of dominance. Data-

stream mining has more constraints and requirements. It determines valuable information from a great deal of 
primitive data. This is adequate for static datasets, where updates are rare. As many modern applications adopt 

dynamic datasets, they need continuous query processing algorithms to revive the query result. The Sliding 

Window defines the set of active points which are the most recently arrived points. The existing work combines 

the ADVANCED ALGORITHM, the APPROXIMATE HOEFFDING BOUND ALGORITHM and the 

APPROXIMATE MINIMUM SCORE ALGORITHM. This combination guarantees accuracy, provides faster 

processing and best performance. The enhancement work proposes the TOP-K SCRUTINIZING ALGORITHM 

for finding dominant itemset from datastream by partitioning the Sliding Window into buckets of equal size. This 

is an Event processing algorithm which includes event scheduling and rescheduling towards avoiding the 

examination of points for inclusion in the Top-K. Experimental results using real datasets and synthetic datasets 

show that the proposed method reduces CPU time and memory overhead. Also, it is quite efficient and achieves 

high accuracy. 
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I. Introduction 
Frequently, two preference based queries are in use. They are the Top-K queries and the Skyline 

queries. The Top-k queries [8] require a ranking function which assigns a value to each point. The ranking 

function is user defined. The Skyline queries are scaling invariant which means that if scaling applies to 

dimension values then, the result remains the same. The Top-K queries maintain the advantages and eliminate 

the drawbacks of both the Top-K queries and the Skyline queries. At present, two basic Sliding Window types 

are available. They are Count based Sliding Window and Time based Sliding Window.  

In a Count based Sliding Window [1], the number of active points remains even. The running out time 
of some points will be equal to the entering time of the same amount of other points. In a Time based Sliding 

Window [1], the number of active points may not remain even. The running out time of a point does not depend 

on the entering and running out time of other points. A Grid based indexing scheme [9] maintains simplicity 

during the presentation of the algorithm. This scheme serves the purpose of book keeping, which deletes a 

running out point and inserts a new point. Subsequently, it updates the scores of the Top-K dominating points. 

The scheme makes easy computation of the domination score of a point. Regular grid and adaptive grid are the 

two types of grid available.  

The initial work studies the combination of an event processing algorithm and two approximate 

algorithms which achieves more than 95 percent accuracy. Subsequently, the work proposes an event processing 

method which partitions the Sliding Window into equal size and thus precise the result having efficiency more 

than 97 percent. The final work carries a thorough experimental evaluation based on real datasets and synthetic 
datasets. This provides evidence regarding the CPU time of the proposed algorithm. Remaining of the paper 

organizes as follows. Section 2 shows the work associated with the problem. Section 3 studies the combination 

of the event processing algorithm and two approximate algorithms. Section 4 discusses a new technique by 

partitioning the Sliding Window. Section 5 presents the experimental evaluation of based on some datasets. 

Section 6 concludes the work. At last, section 7 discusses the future work. 

 

II. Related Work 
Preferences involve in disciplines such as Game Theory, Computational Geometry and many others. 

The batch counting [8] calculates the scores of skyline points in batch instead of iteratively applying separate 
range queries. This involves a light weight technique [8] to derive the upper bound score of non-leaf entries at 

low cost and the lazy counting technique to delay the counting of points for the purpose of forming better groups 
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for batch counting. To be effective, the tree traverses with a carefully designed priority order aiming at 
minimizing the I/O cost.  

A grid-based indexing scheme [7] facilitates an efficient search and update operations, evading costly 

re-organization costs. Here, the method uses an adaptive grid which separates equally the tuples in each 

dimension. The schema formulates and tackles the problem of PROBABILISTIC   TOP-K DOMINATING 

(PTD) query [5] in the context of uncertain databases. This can easily apply the pruning conditions once if the 

lower bound scores are available. The Sliding Window Combinatorial Approximation (SWCA) [5] determines 

frequent itemsets over sliding windows in a datastream. The Min Top-K algorithm [2] maintains a MINIMAL 

TOP-K CANDIDATE SET (MTK) which determines the Top-K value and thus eliminates the need for re-

computation.  

Reverse Top-K queries [4] are essential for the manufacturers to access the potential market and impact 

of their products based on competition. As stated, [6] discusses the problem of processing Top-K dominating 
queries on multidimensional data. The TOP-K MONITORING ALGORITHM (TMA) [9] re-calculates the 

result from scratch. However, the SKY-BAND MONITORING ALGORITHM (SMA) maintains a superset of 

the current answer, for the purpose of avoiding frequent re-computations. According to [1], the running out time 

of a point will be equal to the sum of the entering time of a point and the number of active points. Here, the data 

forms a sequence of points. The entering and running out time instances characterize these points. 

 

III. Combined Algorithm 
1. Introduction 

Three algorithms can work in combination. They are the ADVANCED ALGORITHM (ADA), 

APPROXIMATE HOEFFDING BOUND ALGORITHM (AHBA) and APPROXIMATE MINIMUM SCORE 

ALGORITHM (AMSA). For the purpose of simplicity, the combination of algorithms adopts Count based 

Sliding Window. Here, if a new point enters the Sliding Window the oldest one will run out and the time 

progresses. Hence, the running out time of the points will be equal to the sum of the running out time of the 

points and the number of active points. Here, P is the set of active points, N is the number of active points, 

score(𝑃𝑖) is the number of points dominated by 𝑃𝑖 , Top-K is the set of K points with the best scores, K is the 

number of points in the result, now is the current time instance, and 𝑠𝑐𝑜𝑟𝑒𝑘  is the 𝐾𝑡ℎ  best score. 
 

2. Advanced Algorithm 

The ADVANCED ALGORITHM [1] uses candidate points and thus reduces the number of exact score 
computations. The points whose event processing time is in the near future are the candidate points. The 

algorithm endlessly evaluates the score of these special points. Some points will terminate before processing the 

event, when the run out time of a point is less than the event processing time. Such an event characterizes as 

obsolete. Here, if it evicts obsolete events then, it reduces the storage requirements. The algorithm determines a 

safe interval [1] by using r points and a counter as follows: 

 

𝑆𝐼 𝑃𝑖 = min  
𝑠𝑐𝑜𝑟𝑒𝑘−𝑟 − 𝑠𝑐𝑜𝑟𝑒 𝑝𝑖 

2
 , 𝑒𝑥𝑝𝑟+1 − 𝑛𝑜𝑤                                                       … (1)      

 

3. Approximate Algorithms 

Two approximate algorithms suitable for ADA are APPROXIMATE HOEFFDING BOUND 

ALGORITHM and APPROXIMATE MINIMUM SCORE ALGORITHM in which AHBA [1] guarantees 

accuracy by maintaining samples. If the maximum score of a cell is greater than the difference between the top 

score and the time threshold also no other cell dominates the same cell with a sample, then AMSA [1] keeps 

sample for the corresponding cell (∆𝑡 is the time threshold and scorek  is the top score). ∆𝑡 initializes to n/1000 

and adjusts the values automatically. This controls the error introduced in the score estimation. AMSA uses 

quick and dirty approximation, thus offers fast solution. If 𝑠𝑐𝑜𝑟𝑒1 - 𝑠𝑐𝑜𝑟𝑒𝑘  < 𝑠𝑐𝑜𝑟𝑒𝑘  – minimum score of a cell, 

then exclude all points belonging to the corresponding cell. This combination achieves better efficiency, 
provides faster solution and guarantees accuracy. 

 

IV. Top-K Scrutinizing Algorithm 
The TOP-K SCRUTINIZING ALGORITHM (TSA) is an event processing algorithm which partitions 

the Sliding Window into buckets of equal size and finds dominant itemset from datastream. Table.1 illustrates 

the pseudocode of TSA. The TSA algorithm considers the entering points and the current time instance. The 

inputs are the Truck Datasets, Buckets of equal size B, Sliding Window with five Buckets and n Active Points. 

The algorithm obtains the Top-K dominating points as output. Here, P is the set of active points, N is the 

number of active points, score(𝑃𝑖) is the number of points dominated by 𝑃𝑖 , Top-k is the set of K points with the 
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best scores, K is the number of points in the result, now is the current time instance,  𝑠𝑐𝑜𝑟𝑒𝑘  is the 𝐾𝑡ℎ  best 
score.  

 

Table.1: Top-K Scrutinizing Algorithm. 

 

 

The event processing algorithm contains an event processing time, event generation time and score of a 
point at the event generation time. Each update applies a sequence of operation. Initially, the algorithm updates 

the bookkeeping structure. Line 1 deletes the running out points and enters the new points. Line 1 also updates 

the scores of the Top-K dominating points. Lines 2 to 16 process the entering points 𝑃𝑥  to determine whether 

they should be a part of Top-K. Line 4 to 5 calls the procedure BucketInOut(  ) which tracks the in-out operation 

of each bucket when a point 𝑃𝑥  enters into the window W. Each time when a bucket in-out operation occurs, the 

algorithm deletes the earliest transaction of the corresponding bucket which contains the summary of 

transactions from the current window at each sliding. Hence, there is no need to maintain the whole transactions 

within the current window in memory all along to support window sliding. The partition of the sliding window 

is into five buckets of equal size and each bucket corresponds to a set of transactions. This is to reduce the 

Algorithm TSA (𝑃𝑥 , now) 

      𝑃𝑥      : the entering points 
     now  : the current time instance  

Input    : Truck Datasets,  Buckets of equal size B, Sliding Window W= { 𝐵1 ,𝐵2 , 𝐵3 , 𝐵4 , 𝐵5},  

                Active Points P= { 𝑃1 , 𝑃2, 𝑃3,…, 𝑃𝑛} 

Output : Top-k Dominating Points 

 

 
1.   Update index and scores of points in TOPK; 

2.   𝑒𝑟 . score=0; 

3.   𝑒𝑟 . egt=now; 

4.   Call BucketInOut(  ) 

5.   𝑃𝑥← inserted into the window W 

6.   if (entry.𝑃1  = = exit.𝑃1  = = 𝐵1  && entry.𝑃2  = = exit.𝑃2    = = 𝐵2   && entry.𝑃3   = =exit.𝑃3  = = 𝐵3   &&  

      entry.𝑃4   = = exit.𝑃4   = = 𝐵4  && entry.𝑃5  = = exit.𝑃5  = = 𝐵5) then 

7.   Call FindReferencePoint(𝑃𝑥) 

8.   𝑃𝑟←FindReferencePoint(𝑃𝑥); 

9.   𝑒𝑟←event of 𝑃𝑟 ; 

10. score(𝑃𝑥) ← 𝑒𝑟 . score + now - 𝑒𝑟 . egt-1; 

11. if (score(𝑃𝑥) ≥ 𝑠𝑐𝑜𝑟𝑒𝑘) then 

12. Calculate score(𝑃𝑥) from scratch; 

13. if (score(𝑃𝑥) ≥ 𝑠𝑐𝑜𝑟𝑒𝑘) then  

14. Insert 𝑃𝑥  in TOPK; 

15. if (𝑃𝑥    ∉ TOPK) then  

16. ScheduleEvent (x, score(𝑃𝑥), now); 

17. 𝑒𝑖←EventQueue.RemoveTop (  );  

18. while(𝑒𝑖. ept = = now); 

19. if (number of top-k points ≥ k) then 

20. score ← 𝑒𝑖. score + 𝑒𝑖. ept - 𝑒𝑖. egt; 

21. ScheduleEvent (i, score, now); 

22. if (𝑒𝑖  is not rescheduled) then 

23. Calculate score(𝑃𝑖) from scratch; 

24. if (score(𝑃𝑖) ≥ 𝑠𝑐𝑜𝑟𝑒𝑘) then 

25. Insert  𝑃𝑖   in TOPK; 

26. else ScheduleEvent (i, score(𝑃𝑖),now); 

27. 𝑒𝑖←EventQueue.RemoveTop (  );  

28. function ScheduleEvent (j, score, now) 

29. 𝑒𝑥𝑝1←least run out time of points in TOPK; 

30. ept ←min([𝑠𝑐𝑜𝑟𝑒𝑘- score)/2]+now), 𝑒𝑥𝑝1); 

31. if (ept ≥ now) then 

32. 𝑒𝑗 .ept← ept;  

33. 𝑒𝑗 .egt←now; 

34. 𝑒𝑗 .score ← score; 

35. EventQueue.Insert(𝑒𝑗 ); 
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memory overhead during the storage of transactions. If there are more buckets, then the memory overhead arises 
during storage of the transactions. Line 6 checks in which bucket the points enter and the oldest points run out. 

Line 7 calls the procedure FindReferencePoint( ), which tries to locate a point 𝑃𝑟  in the bucket such that, it 

dominates  𝑃𝑥  and it is not a part of Top-K. If such a point does not exist or the upper bound of the score is 

larger than or equal to 𝑠𝑐𝑜𝑟𝑒𝑘 , then line 12 calculates 𝑃𝑥  from scratch. If score(𝑃𝑥) is greater than  𝑠𝑐𝑜𝑟𝑒𝑘, then 

line 14 inserts 𝑃𝑥  in the  Top-K.  

Otherwise, line 28 to 35 generates an event for 𝑃𝑥  using the procedure scheduleEvent( ). This procedure 

takes three parameters such as the id j of the point, its score and now, which is the current time instance. First, it 

calculates the event processing time. Subsequently, it checks whether time is greater than or equal to now. If so, 
it inserts the event into the priority queue. Observe that, the event processing time is less than now as if the 

parameter score is larger than 𝑠𝑐𝑜𝑟𝑒𝑘 . Thus, line 16 always generates an event, since either the upper bound in 

line 11 or the exact score in line 13 is less than 𝑠𝑐𝑜𝑟𝑒𝑘 . At last, lines 17 to 27 processes all the events with the 

event processing time equal to now. Lines 20 to 21 tries to re-calculate its 𝑒𝑖.ept value by using the upper bound 

of score(𝑃𝑖) for an event 𝑒𝑖. If the event re-inserts into the event priority queue, then consider the subsequent 

event. If not, if the upper bound estimation is poor, it is possible the calculated event time to be less than now. In 

such a case, lines 22 to 26 proceeds with the exact score computation of score(𝑃𝑖) and either inserts 𝑃𝑖  in the 

Top-K or re-calculates the event time based on the exact score of 𝑃𝑖 . Line 19 controls the run out of the Top-K 

dominating points. If a Top-K point expires in now and no updates in 𝑠𝑐𝑜𝑟𝑒𝑘  then, no need to try to calculate 

event times. In this case, it sets the 𝑠𝑐𝑜𝑟𝑒𝑘  to -1 to forcibly insert other points in Top-K. Afterward, it calculates 

the score of the point of the initially examined event and inserts the point in Top-K. Eventually, it tries to re-

calculate the event time of the remaining events. 

 

V. Experimental Results 
All the algorithms implements using C Sharp and conducts experiment on a Pentium at 3.0 GHz with 1 

GB of Random Access Memory (RAM). This uses the real datasets and the synthetic datasets, named as the car-

race datasets (http://www.amstat.org/publications/jse/datasets/nascarr.dat.txt). The dataset undergoes a 

multidimensional analysis. The analysis considers the attributes such as the number of drivers, monthly 

consumer price index, track length, laps completed, numbers of caution flags and lead changes, total prize 

money, completion time, and coordinates of the track.  

 

Table.2: Performance Analysis. 

 

 

 

 

Number of Iterations 

 

CPU Time in Milliseconds 

 

 

ADA 

 

 

ADA with AHBA 

 

ADA with AMSA and  

AHBA 

 

 

TSA 

1 577 390 312 187 

2 468 468 390 202 

3 436 577 343 265 

4 468 405 302 218 

 

Table.2 shows the performance analysis of the algorithms such as ADA, ADA with AHBA, ADA with 

AMSA and AHBA and TSA. The algorithms have the following CPU time during the first iteration. ADA takes 

577 milliseconds; ADA with AHBA takes 390 milliseconds; ADA with AMSA and AHBA takes 312 

milliseconds and TSA takes 187 milliseconds. In the second iteration, the algorithms have the following CPU 
time. ADA takes 468 milliseconds; ADA with AHBA takes 468 milliseconds; ADA with AMSA and AHBA 

takes 390 milliseconds and TSA takes 202 milliseconds. The third iteration has the following CPU time. ADA 

takes 436 milliseconds; ADA with AHBA takes 577 milliseconds; ADA with AMSA and AHBA takes 343 

milliseconds and TSA takes 265 milliseconds. During the second iteration, the algorithms have the following 

CPU time. ADA takes 468 milliseconds; ADA with AHBA takes 405 milliseconds; ADA with AMSA and 

AHBA takes 302 milliseconds and TSA takes 218 milliseconds. The iteration continues till it obtains the Top-K 

itemset. 
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Fig.1: iterations versus CPU time. 

 

Fig.1 plots the CPU time obtained from the previous table for each of the iterations in a graph. The 
graph takes the number of iterations in x-axis and the CPU time in y-axis. The solid diamond shape represents 

the CPU time of TSA. The solid square shape represents the CPU time of ADA with AMSA and AHBA. The 

solid triangle shape represents the CPU time of ADA with AHBA. The solid circle shape represents the CPU 

time of ADA. From the Table.2 and Fig.1, it is clear that TSA reduces the CPU time.  

 

VI. Conclusion 
Top-K dominating query determines the dominating itemset from the data stream by combining the 

notion of ranking function with the concept of dominance. The combination of ADA with AMSA and AHBA is 

an event processing algorithm in which ADA shows the best performance, AMSA offers fast solution and 
AHBA guarantees accuracy. TSA also uses the concepts of Top-K dominating query and retrieves dominant 

itemset from datastream, by partitioning the Sliding Window into buckets of equal size. It is clear that TSA 

reduces the memory overhead since the Sliding Windows gets divided into five buckets and maintains the 

transactions for those five buckets. Finding Top-K itemset using these buckets may also provide higher 

accuracy. It is also evident that TSA has reduced the CPU time better than the combination of ADA with AMSA 

and AHBA. Hence, TSA which is an event based algorithm offers significant flexibility, higher accuracy, 

reduces the memory overhead and the CPU time. 
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